Муниципальное казенное общеобразовательное учреждение

«Брынская средняя общеобразовательная школа»

Думиничский район

Калужская область

Паспорт экологического проекта «Святой колодец» село Брынь Думиничского района

Участники: Козлова А.

Кирилов М.

Зубанова А.

Ранга Н.

Руководитель:

учитель химии и биологии

Желунова Е.В.

с. Брынь.

2020 год.

Информационная карта проекта.

Название проекта	«Святой колодец»
Полное и точное название, адрес	Муниципальное казенное
образовательного учреждения,	общеобразовательное учреждение
которое будет реализовывать	«Брынская средняя
проект.	общеобразовательная школа».
	249310, Калужская область,
	Думиничский район, село Брынь, улица
	Татарская, дом 14.
Проектный коллектив.	Участники:
	Козлова А., Кирилов М.
	Зубанова А., Ранга Н.
	Руководитель:
	учитель химии и биологии
	Желунова Е.В.
На какой территории реализуется	На территории Думиничского района,
проект.	Калужской области.
Время, необходимое для реализации проекта.	Сентябрь 2020-май 2021гг.
Тип проекта по доминирующей	Исследовательский практико-
деятельности учащихся.	ориентированный.

Вид проекта по количеству	Коллективный.
участников.	
Необходимое оборудование:	Стеклянные бутылки с притертой
	пробкой, конические колбы с
	притертой крышкой, химические
	стаканы, водный термометр,
	микроскоп, предметные и покровные
	стекла, лупа, чашки Петри, раствор
	соляной кислоты, метилоранж,
	специальное оборудование для анализа
	качества воды и др.

Аналитическое обоснование актуальности проекта.

За четвертым за бугром,
За лесной избушкой,
Есть чудесный ключ святой
С родниковою водой.

Н. Шаронова

На окраине села Брынь Думиничского района начинается небольшой лес. Он является самым посещаемым местом сельчан не только потому, что отличается близостью и красотой природного ландшафта, но и в первую очередь, тем, что в его чаще расположен родник. Место это не простое. В народе оно называется Святой колодец. С незапамятных времен из уст в уста передавалось поверье о том, что явился над этим родником людям святой образ. Вода в этом роднике считается святой и помогает излечиваться от различных болезней.

Анатолий Львов в своей книге «Веси брынских лесов» пишет: «В трех верстах от храма в лесу Толстых в 1896 году была построена деревянная часовня...». Часовня до наших дней не сохранилась, но источник жив, хотя и находится в плачевном состоянии. При разработке песчаного карьера, очевидно, были нарушены водоносные пласты и,родник стал не таким полноводным, как прежде.

Актуальность проекта.

Проблема чистой воды становится все более острой на планете. Не стал исключением и Думиничский район. Реки мелеют, а вода в них из-за бытовых и промышленных загрязнителей не пригодна для употребления в пищу. Но источники чистой пресной воды есть. В окрестностях нашего села большое количество родников с ключевой водой. Некоторые из них более известны и популярны, некоторые менее, а есть такие, о которых знают несколько человек. В нашем экологическом кружке «Брынские экологи» родилась идея — создать своеобразный атлас «Родниковое ожерелье» и собрать в нем сведения о близлежащих родниках. Начать мы решили именно со Святого колодца. Для каждого источника в рамках исследовательских проектов будет создано описание физического и химического состояния воды.

Учащиеся школы неоднократно принимали участие в природоохранных акциях, например, проект социальной рекламы, «Стражи Земли» и др.

Участвуя в экологических проектах, мы учимся ставить и решать проблемы, предвидеть ситуации, делать обоснованные заключения о состоянии окружающей среды, а также приобретаем опыт, навыки исследовательской работы и активной природоохранной деятельности в партнерстве с природоохранными ведомствами и местными органами власти.

Важно, чтобы каждый человек понимал проблемы окружающей среды, старался сделать её пригодной для своего проживания, нанести ей как можно меньше вреда. Тему исследовательской работы я считаю наиболее актуальной в наше время. Современный человек не может сегодня быть полностью независимым от природы.

Кроме того, духовное возрождение России, в каждой, отдельно взятой местности - есть важная задача при воспитании подрастающего поколения.

Цель проекта:

- составление паспорта родника «Святой Источник» по различным аспектам: духовному, физико-химическому и экологическому;
- эколого-просветительская работа с населением по охране культурноэкологического наследия- родниковой воды.

Задачи:

- произвести качественный анализ воды из родника Святой источник,
- изучить краеведческие материалы по истории родника;
- создать паспорт родника;

- с помощью партнера нашей школы Василькова А.А. восстановить былое величие Святого колодца и часовни около него;
- организовать совместно с жителями села экологические десанты по расчистке и благоустройству родников, находящихся в окрестностях села Брынь;
- развить у учащихся школы и жителей села интерес и уважительное отношение к экологическим проблемам своей местности.

Проект направлен на то, чтобы мотивироватьучащихся на историческое прошлое родного края, своей причастности к состоянию окружающей среды, поразмыслить о проблемах и попытаться внести свой вклад в защиту природы. В рамках проекта ребята научатся искать в различных информационных источниках и отбирать наиболее ценную информацию, оформлять ее в виде тезисов, фоторепортажей, а также проводить исследование с помощью аналитических приборов, химических реактивов. Работа будет проводиться в группах. В конце проекта будет издан паспорт Святого колодца, а также благоустроен сам родник.

Направления исследования.

- 1. Исследование краеведческого материала об историческом прошлом Святого колодца, традиций и истоков сельского праздника Святой колодец.
- 2. Исследование физических и химических свойств воды.
- 2.1.Исследование физических показателей воды (запах, цветность, прозрачность, живые организмы, температура и др.)
 - 2.2.Определение рН воды взятой пробы.
- 2.3.Определение временной жесткости воды в пробе, взятой из родника.

- 2.4.Определение окисляемости воды.
- 2.5.Определение сухого остатка в воде.

Методика исследования.

В ходе работы планируется исследование качественного состава и физических свойств воды из родника Святой колодец.

Исследование физических показателей воды.

Для исследования родниковой воды отбирается простая проба (однократный забор воды, необходимый для анализа). Анализ дает сведения о воде в данном месте в данный момент.

Оборудование: стеклянная бутылка с притертой пробкой, коническая колба с притертой крышкой, химический стакан пустой, химический стакан с дистиллированной водой, водный термометр, микроскоп, предметное и покровное стекло, лупа, чашка Петри.

Чистая вода не имеет запаха, она приобретает его за счет различных стоков. При обнаружении запаха сначала устанавливают его характер: болотный, гнилостный, речной, землистый и т. д. Для определения запаха в коническую колбу с притертой крышкой наливают исследуемую пробу до 2/3 объема и сильно встряхивают в закрытом состоянии. Затем открывают и сразу же отмечают характер и интенсивность запаха, пользуясь таблицей:

№ n/n	Характеристики запаха.	Интенсивность запаха
		в баллах.
1.	Отсутствие ощутимого запаха.	0
2.	Очень слабый запах (не замечается	1
	потребителем, но обнаруживается	
	специалистом).	

3.	Слабый запах (обнаруживается	2
	специалистом, если обратить на это	
	внимание).	
4.	Запах легко обнаруживается.	3
5.	Отчетливый запах (привлекает внимание,	4
	может быть причиной отказа от	
	использования воды).	
6.	Очень сильный запах (делает воду	6
	непригодной для использования).	

Согласно ΓOCT P 51232-98 интенсивность запаха питьевой воды при температуре 20 $^{\,0}$ C не должна превышать 2-х баллов.

<u>Цветность воды</u> определяется через 2 часа после отбора пробы, давая ей качественную оценку в сравнении с дистиллированной водой. Рассматривают воду сверху, сбоку и указывают наблюдаемый цвет. При отсутствии окраски вода считается бесцветной.

Для <u>измерения температуры воды</u> необходимо опустить термометр в волу и подержать там порядка 5-8 мин.

Для <u>обнаружения живых организмов</u>, необходимо рассмотреть воду визуально, невооруженным глазом, при помощи лупы и под микроскопом.

Определение рН воды взятой пробы.

Оборудование: универсальный бумажный индикатор, на упаковке которого находится шкала изменения цвета по Алямовскому.

Для <u>определения рН воды</u>, в образец необходимо опустить пластинку универсального бумажного индикатора и сравнить со шкалой. При наличии прибора рН- метра (прибора Алямовского) можно воспользоваться им.

Определение временной и общей жесткости воды в пробе, взятой из родника.

Оборудование: раствор соляной кислоты, метилоранж,

<u>Определение временной жесткости</u> производится непосредственным титрованием исследуемой воды (объемом 50-100мл) раствором соляной кислоты молярной концентрацией эквивалента 0,1 моль/л в присутствии индикатора метилоранжа.

$$Ca(HCO_3)_2+2HCl=CaCl_2+2H_2O+2CO_2$$

$$Mg(HCO_3)_2+2HCl=MgCl_2+2H_2O+2CO_2$$

Временная жесткость (Хммоль/л)вычисляется по формуле

 $X=V_1*c(HCl)*1000/V_2$, где V_1 — объем соляной кислоты, пошедшей на титрование, V_2 - объем пробы воды, c(HCl)*- молярная концентрация эквивалента раствора соляной кислоты в моль/л.

<u>Общую жесткость воды</u> определяют комплекснометрическим методом. Планируется обратиться в одну из лабораторий Калуги.

Определение окисляемости воды (по Кубелю).

В воде могут содержаться различные органические вещества, которые попадают в углубление на месте выхода родниковых вод на поверхность.

На окисление этих веществ расходуется значительная часть кислорода, находящегося в воде. Наличие в воде органических веществ можно охарактеризовать с помощью окисляемости. Окисляемость- один из показателей загрязнения воды органическими веществами.

Оборудование: коническая колба, раствор серной кислоты, раствор перманганата калия, воронка стеклянная, раствор щавелевой кислоты, спиртовка, асбестовая сетка, штатив,

В тщательно промытую коническую колбу вносят 100 мл исследуемой воды после 2-х часового отстаивания. Добавляют несколько капель разбавленного (1:2) раствора серной кислоты и приливают 20 мл раствора

перманганата калия молярной концентрацией эквивалента 0,01 моль/л. Колбу закрывают воронкой, отросток воронки вводят в колбу, нагревают до кипения и кипятят 10 мин. К горячему раствору приливают 20 мл щавелевой кислоты молярной концентрацией эквивалента 0,01 моль/л. Обесцвеченную смесь титруют при температуре 80 °C раствором перманганата калиямолярной концентрацией эквивалента 0,01 моль/л до появления розового окрашивания и замещают объем перманганата калия, пошедшего на титрование. Одновременно ставят холостой опыт. Все делается, так же как и в первом, но только с дистиллированной водой.

$$X = (a-b)*K*0.01*8*1000 = (a-b)*K*80$$

VV

a- объем перманганата калиямолярной концентрацией эквивалента 0,01 моль/л

в- объем перманганата калия израсходованного на титрование холостой пробы

V- объем пробы, взятой для анализа

К- поправочный коэффициент.

Раствор перманганата необходимо приготовить свежий.

B колбу помещают 100 мл дистиллированной воды, прибавляют 10 мо щавелевой кислоты, молярной концентрацией эквивалента 0,01 моль/л u5 мл разбавленной (1:2) серной кислоты. Смесь нагревают до кипения и титруют раствором перманганата калия до слаборозового цвета. Вычисляют поправочный коэффициент K=10/V, где V- объем раствора перманганата калия, пошедшего на титрование.

Практическая значимость.

Восстановление родника, благоустройство прилегающей к нему территории. Издание паспорта родника Святой колодец. В дальнейшем

продолжение работы по исследованию воды в других родниках с применением школьного оборудования и оборудования, полученного по Проекту.

Последовательность действий при работе над проектом.

- выдвижение гипотезы решения проблемы;
- работа с научной литературой;
- выбор обоснованной методики исследования (наблюдений, экспериментальных, статистических и других методов);
- проведение исследования;
- сбор, систематизация и анализ полученных данных;
- оформление конечных результатов;
- подведение итогов, оформление результатов, их презентация;
- выводы, выдвижение новых проблем исследования, реализация на практике.

Этапы реализации проекта.

1 этап – организационный (сентябрь).

Составление плана работы.

Деление учащихся на группы.

Распределение заданий.

2 этап - практический (октябрь-февраль).

Сбор информации.

Проведение исследований.

Составление аналитической справки.

3 этап–рефлексивный (март-май).

Оформление паспорта родника.

Представление результатов на школьной конференции.

Работа со спонсорами школы по благоустройству территории родника.

Рефлексия работы над проектом осуществляется через размышление о том, что представляет собой родник Святой колодец с точки зрения духовного и экологического наследия.

Ожидаемые результаты реализации проекта.

- Привитие учащимся чувства любви и бережного отношения к природе.
- Воспитание уважения школьников и взрослых жителей к своему родному селу и его традициям.
- Активизация творческого потенциала школьников.
- Совершенствование навыков исследовательской и проектной деятельности.
- Развитие интереса к изучению экологии родного края.
- Привлечение общественности к участию в работе по экологическому воспитанию школьников.
- Восстановление родника Святой колодец.

Проявлением патриотизма также является любовь к природе своей малой родины, внимание, забота и уважение к её животному и растительному миру. Эти чувства можно развить в процессе разностороннего

экологического образования подрастающего поколения. Конечной целью такого образования является формирование у человека нового экологического мышления, способности осознавать последствия своих действий по отношению к окружающей среде, умение жить в гармонии с природой.

Список использованной литературы.

- 1. Львов А.И. Веси брынских лесов, Калуга: Наша полиграфия, 2015
- 2. Шаронова Н.Д. Брынские побасенки, Калуга: Полиграфинформ, 2012
- 3. Савиткин И.И., Толкачева Т.К., Учителю химии об экологии: Методические рекомендации. Калуга: Институт усовершенствования учителей, 2000
- 4. Здоровье среды (школьный практикум). Региональное учебнометодическое пособие /Стрельцов А.Б., Кристантинов Е.Л., Захаров В.М. и др. – Калуга.: Издательство КГПУ им. К.Э. Циолковского, 2006